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multilayer neural networks
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Japan
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Abstract. In this letter we re-examine the emergence of plateaus or symmetric phases in on-
line learning of a committee machine. We propose a simple matrix-update in order to avoid
the symmetric phase. Simulations show that the length of the plateaus can be considerably
decreased. Annealing of the learning rate can then be applied much earlier, making on-line
learning more effective.

Learning from examples and generalizing the acquired knowledge to unknown data is the
key property of neural networks. Among all learning algorithms, on-line learning has
recently attracted considerable attention [1–3]. In on-line learning, the weights are updated
by using only the example presented at timet , i.e.

W (t + 1) =W (t)+ η1W [x(t), z∗(t);W (t)]. (1)

The advantages are rather obvious, the update is very fast and simple, while memory to
store all examples is not necessary. It is also possible to enable the system to follow
non-stationarities in the data by emphasizing more recent examples.

The learning rateη plays a much more important role in on-line learning than in
iterative batch learning. Good results can already be achieved by a simple time-independent
learning rateη0. In unrealizable tasks, which can never be learnt exactly, the following
dilemmaoccurs, see [2, 4]. While a largeη0 smaller than the limitηmax can accelerate the
convergence, it also leads to a large final error. The final error results from fluctuations
around the optimum and the variance of these fluctuations is proportional toη0. Only an
asymptotically vanishing learning rate, i.e.η → 0, can reach the optimum. This suggests
a time-dependent learning rateη(t), which is annealed during training. Recently, it has
been proved [5, 6] that on-line learning with an optimally annealed learning rate can be
asymptotically efficient, i.e. it can be as good as the best possible solution. Until now,
this result has only been tested in single-layer models [4]. In studies of on-line learning
in multi-layer networks [7, 8], a metastablesymmetric phasewas found, which makes an
effective annealing impossible. Several efforts have been made to shorten the time spent in
the symmetric phase. However, they are either not practical as they use explicit knowledge
about the learning task [9, 10] or very complicated [11, 12]. In this letter we want to show
that on-line learning with a rather simple matrix-update can considerably reduce the time
spent in the symmetric phase. An effective annealing is then possible.
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The model we want to use for illustration is thesoft-committee machine, which was
discussed in detail in [7, 8]. The committee machine is a special two-layer network with
only one-layer of adjustable weightsW between theN input units and theH hidden units.
The weights between hidden units and outputz are fixed to one, such that

z =
H∑
k=1

g(W T
k x). (2)

A soft-committee machine has continuous outputs by applying a sigmoid functiong(h) on
the local fieldsh. We study supervised learning in ateacher–student scenario. This means
that the correct outputsz∗ are given by another network, the teacher. In order to make
the task unrealizable, we assume that the teacher network and the student network have
identical architectures, but the teacher outputsz∗0 are corrupted by a random Gaussian noise
ε ∈ N(0, σ ), yielding z∗ = z∗0 + ε. For training, the teacher network is invisible to the
student, only the target outputsz∗ can be facilitated. For the evaluation of the performance,
all variables of the teacher can be used.

Supervised training minimizes the difference between the correct outputz∗ given
by the teacher and the actual outputz produced by the student, i.e. the loss-function
loss(z∗, z) := 1

2[z∗ − z]2. The overall performance of the student is measured by the
averaged loss over all possible inputs, calledgeneralization errorEG = 〈loss(z∗, z)〉x .

In the teacher–student scenario, the generalization error can be calculated if we make
an assumption about the distribution of the inputsx. For random inputsx, the dot-products
h∗k :=W ∗

k
Tx andhl :=W T

l x become Gaussians if the input-dimensionN becomes large.
The correlations between these two Gaussian-variables are〈h∗kh∗l 〉x = Skl , 〈h∗khl〉x = Rkl
and〈hkhl〉x = Qkl . They define two sets of dynamicalorder parameters,

Rkl :=W ∗
k
TW ∗

l and Qkl :=W T
k Wl (3)

and the constant task-dependent parameterSkl :=W ∗
k
TW ∗

l .
The generalization error can then be calculated by an average over the correlated

Gaussiansh∗k and hl . By using the error-functiong(h) = erf(h/
√

2), we can find an
algebraic expression for the redefined generalization errorEG := EG − σ 2

2 , which is for
Skl = δkl ,

EG = H

6
− 2

π

H∑
k,l=1

arcsin
Rkl√

2(1+Qll)
+ 1

π

H∑
k,l=1

arcsin
Qkl√

(1+Qkk)(1+Qll)
. (4)

Usually the weights are adapted by ascalar gradient descent update,

η1Wk(t) = −η∇Wk
loss[z∗(t), z(t)]. (5)

It is local as it uses, for the update of the hidden unitk, only the information available at
the hidden unitk. On-line training of the committee machine with a scalar-update and a
fixed learning rateη0 was studied by Saad and Solla [7, 8]. The characteristic behaviour is
shown in figure 1.

For small and large numbers of examples, the dilemma common to online learning with
a fixed learning rate becomes apparent. With a larger learning rate it is possible to achieve
a faster convergence for smallP/N , however the final result for largeP/N is worse due to
fluctuations. Characteristical for the scalar gradient descent update is the long plateau of the
learning curve in the intermediate range, where the generalization error is extremely slowly
decreasing. The reason of the appearance of the plateau is the nearly perfect symmetry of
theH subperceptrons, which can be seen in the values ofQkl ' Q.



Letter to the Editor L415

Figure 1. Learning curves for on-line learning of a committee machine with scalar gradient
descent update and fixedη0. The generalization errorEG is shown as a function of the
normalized number of examplesP/N . Different learning ratesη0 have been used (from 0.5 to
0.02 corresponding to the final theoretical values on the right-hand side). The problem of the
fixed learning rate can be seen, a largerη0 leads to a faster convergence, but also produces a
worse final result. Theplateausare the intermediate regions, where the curves are horizontal for
a long time. The simulation corresponds to the analytical solution of [8, 9]. (Parameters: task
H = 3 and noise levelσ 2 = 0.1; asymmetric initial conditionsQkl ' kQ0δkl with Q0 = 0.1;
dotted curves: curved one, see close tot = 10, is simple annealing of the scalar update, the
diagonal one is the tangent on its fastest decrease, and the horizontal one its final state, which
is also the lowest plateau value.) Note, that the scale of both figures is double-logarithmic.

The system remains in this symmetric phase for quite a long time, since the breaking
of the symmetry based purely on fluctuations takes a long time. Also the plateaus are left
earlier, if the learning rate is larger, see figure 1. From this, we can conclude that the
learning rate has to remain considerably large until the symmetric phase has been passed.
To start annealing at the beginning, would lead directly into the symmetric phase. Further
annealing would probably make it impossible to leave the symmetric phase again (dotted
curve in figures).

In order to break the symmetry between the hidden units earlier, a non-local update is
necessary. It must facilitate information from other hidden units. This can be achieved by
a matrix-update, i.e.

η1Wk(t) = −η
H∑
l=1

(G−1)kl∇Wl
loss[z∗(t), z(t)]. (6)

What should the matrixGkl look like? It should only depend on accessible information,
which means it can depend on theQkl , but not on the unknownRkl or Skl . In this letter,
we show that the following choice can yield interesting results,

Gkl = 2

π
(1+Qkk +Qll − 2Qkl)

− 1
2 . (7)

A theoretical derivation is not yet available and also not within the scope of this letter.
The proposed choice (7) was found empirically, starting from the ‘natural gradient’ proposed
by Amari [5]. The important property of the matrixGkl is its symmetry in theQkl . The
matrixG cannot be inverted in the symmetric phase, whenQ is not of full rank. Preliminary
results indicate, that similar results can be achieved by using the ‘natural gradient’ [14, 15].
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Figure 2. Performance using matrix-update. The dilemma of the fixed learning rate appears
again. The plateaus, however, are much shorter and disappear completely for very small learning
rates. The same value ofη0 leads to the same final error as in the scalar update, however, it is
reached much earlier than in figure 1, also indicated by the triangles versus the diamonds. The
lowest full curve shows the results which can be achieved by matrix-update with an optimally
annealed learning rate. The system is still attracted by the symmetric phase which slows the
learning speed down. However, once the plateau is passed, learning speed can accelerate again
and it can catch up with its former fastest descent, shown by the dotted tangent-line. The
tangent line is the continuation of the fastest descent betweenP/N = 2 and 8; it is also shown
in figure 1. (Parameters and dotted lines as in figure 1. Optimized annealing parameters for the
task withH = 3 andσ 2 = 0.1 areb = 6, d = 0.1, τ = 100, andc = 0.6.)

The singularity ofG makes theinitial conditions important. They are often chosen
symmetrically, however, they should now be asymmetric. We can choose random initial
weightsW (0), such that the initial values fulfil,Qkl ' kQ0δkl with a certainQ0. The
overlaps with the teacher should remain unaffected and be only of the order of random
fluctuations. The initial conditions have an influence on the length of the plateaus, which
was studied for symmetric initial conditions in [13]. Some results on asymmetric initial
conditions can be found in [14]. To make the comparison between matrix-update and
scalar-update fair, we have used the same asymmetric initial conditions in both cases, i.e.
in both figures.

The effect of the matrix-update becomes immediately apparent when we use it with
a fixed learning rateη0. Results are shown in figure 2. We can see that the sameη0

leads to the same final error, which is another reason for this choice ofG. The final error
is, however, reached much faster with the matrix-update. A closer look reveals that the
plateaus are much shorter than in the case of the scalar-update. For small values ofη0, they
can completely disappear.

As the symmetric phase is passed earlier, we can also apply annealing much earlier. To
determine the annealing schemeη(t), we should specify the initial conditionη(t → 0) = c
and the asymptotical scaling lawη(t →∞) = b/t . Furthermore, the learning rate should
remain considerably large until timeτ when the plateau is passed, such thatη(τ) = d > 0.
This can be summarized in the following scheme,

η(t) =


c − (c − d)f (t, τ ) for t 6 τ(

1

d
+ t − τ

b

)−1

for t > τ .
(8)

To find a lower bound of the performance, we determine the optimal values ofb, d, τ , c
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and the functionf (t, τ ), which minimize the generalization error. Only the parameterb

affects the asymptotical scaling of the generalization error. The parametersd and τ can
delay the onset of the asymptotical scaling. And finallyc andf (t, τ ) have only an effect
on the behaviour above the plateau. A slow decrease of the learning rate above the plateau
asf (t, τ ) = log(1+ t)/ log(1+ τ) is better thanf (t, τ ) = t/τ .

In practice, when the generalization error is unknown, additional knowledge about the
performance is required, which can be provided by a validation scheme such as test-set
validation or cross validation. At this point we do not know, whether the optimal value of
b can be determined without additional knowledge about the task. This question should be
answered by a theory of the matrix-update. The results of optimal annealing are also shown
in figure 2.

In this letter, a matrix-update was proposed to accelerate on-line learning in multi-layer
neural networks. The proposed approach facilitates the updates of all hidden units and is
therefore able to break the symmetry responsible for the plateaus in the learning curves. It
is based on a matrix inversion of aH × H matrix, and is feasible as long as the number
of hidden unitsH is small. Until now, matrix-update has only been proposed in theoretical
proofs of the efficiency of on-line learning [5, 6]. It has never been studied in an explicit
application to a multilayer neural net. It should be emphasized that we are only at the
beginning with our knowledge on matrix-update. The promising results of this short letter
should stimulate further interest in this direction.

I would like to thank S Amari and all the participants of the ‘themed week on on-line
learning’ at the Newton Institute in Cambridge for stimulating discussions. I thank E Helle
for assistance concerning the presentation.
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